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Abstract
Nonnegative matrix factorization (NMF) is a popular dimensionality reduction technique.
NMF is typically cast as a non-convex optimization problem solved via standard iterative
schemes, such as coordinate descent methods. Hence the choice of the initialization for the
variables is crucial as it will influence the factorization quality and the convergence speed.
Different strategies have been proposed in the literature, the most popular ones rely on
singular value decomposition (SVD). In particular, Atif et al. (Pattern Recognit Lett 122:53–
59, 2019) have introduced a very efficient SVD-based initialization, namely NNSVD-LRC,
that overcomes the drawbacks of previous methods, namely, it guarantees that (i) the error
decreases as the factorization rank increases, (ii) the initial factors are sparse, and (iii) the
computational cost is low. In this paper, we improve upon NNSVD-LRC by using the low-
rank structure of the residual matrix; this allows us to obtain NMF initializations with similar
quality to NNSVD-LRC (in terms of error and sparsity) while reducing the computational
load. We evaluate our proposed solution over other NMF initializations on several real dense
and sparse datasets.
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1 Introduction

Nonnegative matrix factorization (NMF) decomposes an input nonnegative data matrix, X ∈
R
m×n+ , into the product of two nonnegative matrices W ∈ R

m×k+ and H ∈ R
k×n+ such that

X ≈ WH , where k is the rank of the factorization. The nonnegativity constraints of NMF
allow one to reconstruct data using a purely additive model, with the advantage of a natural
interpretability. This makes NMF useful in many applications (Cichocki et al. 2009; Gillis
2020) in various research fields like image analysis (Ensari 2016; Prajapati and Jadhav 2015;
Luce et al. 2016; Shiga et al. 2016), text mining (Du et al. 2019), signal processing (Yoshii
et al. 2016), and computational biology (Maruyama et al. 2014).

NMFs are in most cases computed by solving the following optimization problem:

min
W≥0,H≥0

‖X − WH‖2F , (1)

where || · ||F denotes the Frobenius norm. Most algorithms for solving (1) use standard non-
linear optimization schemes such as block coordinate descent methods, updating the factors
in an iterative way; see, e.g., Cichocki et al. (2009), Gillis (2020) and the references therein.
Hence, they require initialization mechanisms for the variables, W and H , that can greatly
influence the factorization results. They can affect both (i) the number of iterations needed for
an algorithm to converge (in fact, if the initial point is closer to a localminimum, it will require
a reduced number of iterations to converge to it), and (ii) the final solution the algorithm
will converge to. Different strategies have been proposed for NMF initialization (Esposito
2021), such as simple schemes (e.g., random initializations) (Langville et al. 2006), structured
schemes (e.g., SVD- or clustering-based (Wild et al. 2004; Rezaei et al. 2011)), evolutionary-
based approaches (e.g., genetics algorithms, particle swarm optimization) (Janecek and Tan
2011), and geometric-based methods. The latter class of methods tries to locate the vertices
of the convex polytope formed by the columns of X ; see, e.g., Zdunek (2012); Araújo et al.
(2001); Nascimento and Dias (2005); Liu and Tan (2018) and [ Gillis (2020) Chapter 7].
To the best of our knowledge, some of the most popular initialization methods for NMF
are based on deterministic low-rank decompositions such as rank-1 decomposition (Liu and
Tan 2018) and the SVD (Esposito 2021), and geometric methods such as vertex component
analysis (Nascimento and Dias 2005) and the successive projection algorithm (Araújo et al.
2001; Sauwen et al. 2017). In this paper, we focus on these latter. In this class, two of
the most widely used methods, introduced in Boutsidis and Gallopoulos (2008) and Qiao
(2015), have the drawback to increasing the approximation error, ||X − WH ||2F , as the rank
increases; see Sect. 2 for more details. More recently, a variant of these approaches, referred
to as Nonnegative SVD with Low-Rank Correction (NNSVD-LRC), makes use of a low-
rank correction to address this issue (Atif et al. 2019), while reducing the computational
load by using a truncated SVD of smaller rank (roughly half). In this paper, we improve
upon NNSVD-LRC by proposing a new initialization scheme, referred to as accelerated
Nonnegative SVD with Progressive Residual Projection (accNNSVD-PRP), that reduces
further the computational load ofNNSVD-LRCby keeping track of the residual using its low-
rank property. The paper is organized as follows. Section2 briefly reviews the background of
SVD-based initialization for NMF, with an emphasis on NNSVD-LRC. Section3 details our
proposed solution, and highlights the differences with existing SVD-based initializations. In
Sect. 4, we show that the new proposed initialization, accNNSVD-PRP, compares favorably
against standard structured and random initializations on several real dense and sparse data
sets. Section5 concludes the paper and discusses some future directions of research.
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2 SVD-based NMF initializations: previous works

Asmentioned in the introduction, SVD-based initializations are themost popular and effective
for NMF. Recall that the rank-p truncated SVD approximates a data matrix X ∈ R

m×n+ with
a lower-rank matrix composed by p rank-one terms as follows:

X ≈ X p = Up�pV
�
p , (2)

where X p is the best rank-p approximation of X in the Frobenius norm, Up ∈ R
m×p and

Vp ∈ R
n×p contain left and right singular vectors, and �p ∈ R

p×p contains the singular
values on its diagonal in nonincreasing order. Let us write the truncated SVD as the product
of only two matrices, as follows

X ≈ X p =
p∑

i=1

yi zi = Y Z , (3)

where Y = Up�
1/2
p ∈ R

m×p and Z = �
1/2
p V�

p ∈ R
p×n , so that yi = √

σiUp(:, i) and
zi = √

σi Vp(:, i)� for 1 ≤ i ≤ p. (Note that zi ’s are row vectors, which will simplify the
notation by avoiding using the transpose sign.) Due to their negative entries,1 Y and Z cannot
be used directly for NMF initialization.

Let us define, for a generic vector b ∈ R
q , its nonnegative part, b(≥0) = max(0, b), and

its nonpositive part, b(≤0) = max(0,−b), so that b = b(≥0) − b(≤0). In this way, (3) can be
rewritten as:

X p =
p∑

i=1

(
y(≥0)
i z(≥0)

i + y(≤0)
i z(≤0)

i

)
−

p∑

i=1

(
y(≥0)
i z(≤0)

i + y(≤0)
i z(≥0)

i

)
. (4)

The negative sign of the second term in (4) poses challenges for NMF initialization, since it
can lead to negative initialization values, which are not suitable for NMF purposes. In the
literature, there are different methods designed to effectively manage and mitigate the impact
of negative values.

The two most popular and widely used approaches are the following:
(1) Nonnegative Double SVD (NNDSVD) (Boutsidis and Gallopoulos 2008) discards the
second term (with the minus sign) in (4), and selects p product terms (among the 2p)
from the first term according to the following criterion: for each i , it chooses y(≥0)

i z(≥0)
i

if ||y(≥0)
i z(≥0)

i ||F > ||y(≤0)
i z(≤0)

i ||F , otherwise it opts for y(≤0)
i z(≤0)

i . This takes advantage
of the sign ambiguity of the SVD (Boutsidis and Gallopoulos 2008; Bro et al. 2008).
(2) SVD-NMF (Qiao 2015) adopts as an initialization the component-wise absolute values
of Y and Z , that is, W = |Y | and H = |Z |.

Unfortunately, these two methods have several drawbacks. First, the reconstruction error
of the initialization, ||X − WH ||2F , increases as the rank of the factorization increases. This
is because all negative terms are discarded. Second, a lot of information embedded into the
first term of (4) is lost. To alleviate these drawbacks, another method, called Nonnegative
SVD with Low-Rank Correction (NNSVD-LRC), was proposed more recently in Atif et al.
(2019) that splitting (4) in different parts, it considers just the nonnegative side of the rank
p-approximation.

1 Roughly half of them, except for the first rank-one factor, by the Perron-Frobenius theorem (Berman and
Plemmons 1994).
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2.1 Nonnegative SVDwith low-rank correction

NNSVD-LRC is composed by two phases: a nonnegative SVD (NNSVD) initialization,
followed a Low-Rank Correction (LRC) that allows NNSVD-LRC to decrease the error as
the factorization rank increases. The pseudo-code of NNSVD-LRC is detailed in Algorithm
1.

Algorithm 1 NNSVD-LRC
Require: A nonnegative matrix X , factorization rank k, the stopping parameter δ ∈ (0, 1) for the low-rank

correction.
Ensure: Nonnegative factors W ∈ R

m×k and H ∈ R
k×n such that X ≈ WH .

Phase 1 - Nonnegative Singular Value Decomposition

1: p = 	 k2 + 1
;
2: [Up, �p, Vp] = truncated-SVD(X , p);

3: Y = Up�
1/2
p ; Z = �

1/2
p V T

p ;
4: W (:, 1) = |Y (:, 1)|; H(1, :) = |Z(1, :)|;
5: i = 2; j = 2;
6: while j ≤ k do
7: if j is even then
8: W (:, j) = max(Y (:, i), 0);
9: H( j, :) = max(Z(i, :), 0);
10: else
11: W (:, j) = max(−Y (:, i), 0);
12: H( j, :) = max(−Z(i, :), 0);
13: i = i + 1;
14: end if
15: j = j + 1;
16: end while

Phase 2 - Low rank correction

17: X p = Y Z ;
18: e0 = ||X p − WH ||F ; t = 0;
19: while t = 0 or et − et−1 ≥ δe0 do
20: Perform one iteration of A-HALS Gillis and Glineur (2012) on X p starting from (W , H) to obtain an

improved solution (W , H).
21: et+1 = ||X p − WH ||F ;
22: t = t + 1;
23: end while

The first phase, NNSVD, computes the nonnegative factors W and H from the rank-p
truncated SVD of X , using p = 	k/2 + 1
 as in (2), and then construct Y Z as in (3). By
the Perron-Frobenius theorem, |y1||z1| is an optimal rank-one approximation of X in the
Frobenius norm, hence we set W (:, 1) = |y1| and H(1, :) = |z1|.

The remaining k − 1 columns of W and rows of H are completed with the next 	p/2

factors of the truncated SVD as follows:

W (:, j) =
{
y(≥0)
i if j is even,

y(≤0)
i otherwise,

H( j, :) =
{
z(≥0)
i if j is even,

z(≤0)
i otherwise,

(5)

where j = 2, 3, . . . , k and i = 	 j
2 + 1
.

The second phase will fed the preliminary factors W and H into LRC to reduce the error
induced during the NNSVD phase due to loss of information in the second term of (4).
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This is done by using a state-of-the-art NMF algorithm, namely the Accelerated Hierarchical
Alternating Least Squares (A-HALS)2 algorithm (Gillis and Glineur 2012), to solve

min
W≥0,H≥0

‖X p − WH‖2F . (6)

The reason to use X p instead of X is that X p = Y Z has a low rank representation and hence
each iteration of the subsequent NMF algorithm can be reduced from O(mnk) operations
per iteration to O

(
(m + n)k2

)
operations. Although NNSVD-LRC performs a few relatively

cheap A-HALS iterations, it is found empirically that the time taken by these iterations is
not negligible compared to the truncated SVD computation.

This motivates us to introduce a new SVD-based initialization for NMF, namely
accNNSVD-PRP described in the next section.

3 Accelerated nonnegative SVDwith progressive residual projection

In this section, we detail the new proposed SVD-based initialization for NMF, namely Accel-
erated NNSVD with Progressive Residual Projection (accNNSVD-PRP); see Algorithm 2.

Algorithm 2 Accelerated Nonnegative SVD with Progressive Residual Projection
(accNNSVD-PRP)
Require: A nonnegative matrix X factorization rank k, extrapolation parameter αini t , tolerance for the stop-

ping criterion tol, and maximum number of iterates t(max).
Ensure: Nonnegative factors W ∈ R

m×k+ and H ∈ R
k×n+ such that X ≈ WH .

1: [W , H , H ] = mNNSVD(X , k); %See Algorithm 3.
2: [H ] = PRP(W , H , H , αini t , tol, t

(max)); %See Algorithm 4.

It differs from NNSVD-LRC in the following ways:

(1) It modifies the first phase, NNSVD, to keep track of the second term of (4) which is
discarded by NNSVD-LRC; see Algorithm 3.

(2) It replaces the second phase, LRC, by a cheaper one, which we refer to as Progressive
Residual Projection (PRP). In contrast to NNSVD-LRC, it only updates the factor H to
decrease the error.

Let us describe these two phases in more details.
Phase 1: modified NNSVD (mNNSVD) This phase is very similar to NNSVD, the first

phase of NNSVD-LRC, see Algorithm 1. The generated factors (W , H) are the same since
it splits in different parts (5), but mNNSVD keeps track of the discarded term in (4), denoted
H̄ , such that

X p = WH − WH , where
(
W , H , H

) ≥ 0,

that is,

H(1, :) = 0, and H( j, :) =
{
z(≤0)
i if j is even,

z(≥0)
i otherwise,

2 A-HALS is an accelerated variant of the HALS algorithm (Cichocki et al. 2007) that uses a block coordinate
descent method to solve the nonnegative least squares subproblems in order to update the factor matrices W
and H .
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where j = 2, 3, . . . , k, i = 	 j
2 + 1
, and 0 denotes the vector of zeros of appropriate

dimension. Algorithm 3 described this procedure.

Algorithm 3Modified NNSVD (mNNSVD)
Require: A nonnegative matrix X and factorization rank k.

Ensure: Nonnegative factors W ∈ R
m×k+ , H ∈ R

k×n+ and H ∈ R
k×n+ such that X ≈ X p = W

(
H − H

)
.

1: p = 	 k2 + 1
;
2: [Up, �p, Vp] = truncated-SVD(X , p);
3: Yp = U�1/2; Z p = �1/2V T ;
4: W (:, 1) = |Yp(:, 1)|; H(1, :) = |Z p(1, :)|; H(1, :) = 0;
5: i = 2; j = 2;
6: while j ≤ k do
7: if j is even then
8: W (:, j) = max(Yp(:, i), 0);
9: H( j, :) = max(Z p(i, :), 0);
10: H( j, :) = max(−Z p(i, :), 0);
11: else
12: W (:, j) = max(−Yp(:, i), 0);
13: H( j, :) = max(−Z p(i, :), 0);
14: H( j, :) = max(Z p(i, :), 0);
15: i = i + 1;
16: end if
17: j = j + 1;
18: end while

Phase 2: Progressive Residual Projection (PRP)
From the output of Algorithm 3, we directly use the basis matrix W as initialization. We

will only update H to reduce the approximation error.
To this aim, similarly as in LRC, we want to solve

min
H≥0

F(H) := ||X p − WH ||2F . (7)

Let us denote H (0) and H
(0)

the output of mNNSVD. We have X p = WH (0) − WH
(0)

. To
solve (7), let us resort to Nesterov accelerated gradient descent (Nesterov 1983, 2018), and
let us denote the iterates H (t) for t = 0, 1, . . . . At every iteration, we will have

X p = WH (0) − WH
(0) ≈ WH (t).

To progressively keep track of the residual, let us define

H
(t) = H

(0) + H (t) − H (0).

This implies that, for all t , the following equality holds

X p = W
(
H (t) − H

(t)
)

. (8)

This can be used to compute the gradient efficiently, as follows:

∇F
(
H (t)

)
= −2W� (

X p − WH (t)
)

= 2W�WH
(t)

. (9)

It is worthy to note that the formulation of the gradient in (9) implicitly depends on H (t). Since
Nesterov accelerated gradient method does not ensure the objective function to decrease
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at every iteration, we embed the code with a restarting scheme. If the objective function
increases, the algorithm abandons the extrapolated sequence and takes a standard gradient
step (O’donoghue B, Candes E, 2015). The cost for each iteration of this phase consists of
O

(
k2(m + n)

)
operations. In contrast, although LRC has the same computational cost per

iteration, it alternates between optimizingW and H , necessitating a few iterations each time
to update both factors, which results in a comparatively slower process. On the other hand,
PRP exclusively optimizes H and typically requires less iterations (as it updates only H ), it
operates significantly faster than LRC.

Algorithm 4 provides the pseudo-code of PRP, where S(t) denotes the extrapolated
sequence ofNesterov gradientmethod (Nesterov 1983). Recall thatNesterov accelerated gra-
dient method performs a projected gradient step (step 3 in Algorithm 4) from an extrapolated
sequence, denoted S(t), computed via a so-called extrapolation, see step 5 in Algorithm 4,
where the so-called extrapolation parameters (step 4 in Algorithm 4) are chosen to guarantee
an optimal convergence rate.

Algorithm 4 Progressive Residual Projection

Require: Nonnegative factors W ∈ R
m×k+ , H (0) ∈ R

k×n+ , and H
(0) ∈ R

k×n+ , extrapolation parameter αini t ,

tolerance for the stopping criterion tol, and maximum number of iterates t(max).
Ensure: Nonnegative factor H ∈ R

k×n+ .

1: Define: S(0) = H (0); S
(0) = H

(0)
; α(0) = αini t ; �S = H (0) − H

(0)
; e(0) = ‖WS

(0)‖F ; e(1) = e(0);
L = ‖W�W‖2; t = 1;

2: while t ≤ t(max) and
(
t == 1 or α(t) == 1 or (e(t−1) − e(t)) ≥ tol · ||X p ||F

)
do

3: H (t) = max

(
0, S(t−1) −

(
2
L (W�W )S

(t−1)
))

4: α(t) = 1+
√
4
(
α(t−1)

)2+1
2 ;

5: S(t) = H (t) + α(t−1)−1
α(t)

(
H (t) − H (t−1)

)
;

6: S
(t) = S(t) − �S;

7: e(t) = ‖WS
(t)‖F

8: if
(
e(t−1) − e(t)

)
< 0 then

9: α(t) = 1; S(t) = H (t−1); S
(t) = S(t) − �S;

10: end if
11: t = t + 1;
12: end while
13: H = H (t−1)

Sparsity of factors in accNNSVD-PRP SinceW is initialized via the SVD in accNNSVD-
PRP, its columnswill be roughly 50% sparse (except for the first one, by the Perron-Frobenius
theorem). On the other hand, since H is optimized, it is hard to predict the sparsity it will
achieve, and it will depend on the data set. On the dense data sets presented in Sect. 4.1, the
average sparsity of H was about 50% (between 45% and 56% for all data sets and tested
ranks). For the sparse data sets (see Sect. 4.1), the sparsity was between 64% and 74%.

4 Numerical experiments

In this section, we show some numerical results to corroborate the goodness of our proposed
method as initialization for NMF problems. The code of accNNSVD-PRP is available on
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GitHub at https://github.com/5y3datif/accNNSVD-PRP. We compare the proposed method
with the scaled random initialization (SRI) from Gillis and Glineur (2008, 2012), and with
five structure-based NMF initializations: three are SVD-based, namely NNDSVD, SVD-
NMF and NNSVD- LRC (Atif et al. 2019), and two clustering-based, namely a recent hybrid
method combining clustering and the computation of rank-one SVDs called CR1- NMF (Liu
and Tan 2017), and SPKM based on spherical k-means (Wild et al. 2004). The code for CR1-
NMF and SPKM are available from https://github.com/zhaoqiangliu/cr1-nmf. Note that,
because of the non-deterministic nature of CR1-NMF, SPMK and SRI, we run the methods
100 times and report mean results along with corresponding standard deviations. All tests are
preformed using Matlab R2021b on a laptop Intel(R) Core(TM) i5-9300H CPU@ 2.40GHz
empowered byNVIDIAGEFORCEGTX 1650, CUDA toolkit 10.0 and cuDNN7.4.We take
the advantage of available GPU (whenever possible) during simulation. We will compare the
various methods using the following two quantities:

1. the relative error(X ,WH) = ‖X−WH‖F‖X‖F ,
2. the computational time which is computed as the CPU time in Matlab.

4.1 Datasets description

We conduct experiments on the following dense and sparse datasets.

Dense datasets

The following three widely used and real dense datasets:
• AT&T Faces is a dataset of face images taken in 1992–1994 and it is one of the widely
used face images datasets by the research community. There are ten different images of 40
distinct subjects. The size of each image is 92×112 pixels, with 256 grey levels per pixel.
The dataset is freely available from http://cam-orl.co.uk/facedatabase.html.
• Faces95 is a facial images dataset that consists of 72 subjects such that there is a sequence of
20 images with a resolution of 180×200 pixels. The dataset is freely accessible from https://
www.essex.ac.uk/mv/allfaces/faces95.zip.
• PaviaU is a Hyperspectral image dataset acquired by the ROSIS sensor during a flight
campaign over Pavia, Italy. Each image has resolution of 610×610 with a spatial resolution
of 1.3m, and 103 spectral bands. The dataset is freely available from http://www.ehu.eus/
ccwintco/uploads/e/ee/PaviaU.mat, http://www.ehu.eus/ccwintco/uploads/5/50/PaviaU_gt.
mat.

Sparse datasets

We also tested our approach on sparse document datasets. The datasets were derived from
the San Jose Mercury newspaper articles that are distributed as part of the TREC collection
(TIPSTERVol. 3) and are accessible from https://catalog.ldc.upenn.edu/LDC93T3D (Zhong
and Ghosh 2005):
• Sports: it consists of documents about seven different sports (such as baseball, basketball,
football, hockey, boxing, bicycle, and golf). It contains 8580 documents with 14870 words.
Its sparsity is 99.14%.
• Reviews: it consists documents about five topics (such as food, movies, music, radio, and
restaurants). It contains of 4069 documents and 18483 words. Its sparsity is 98.99%.
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Fig. 1 Relative errors of the SVD-based NMF initializations for different values of the rank k, for the data set
AT&T Faces and Reviews. Similar results are observed for the other datasets

•Hitech: it consists documents about six technologies (such as computers, electronics health,
medical, research, and technology). It contains 2301documentswith 10080words. Its sparsity
is 99.14%.

4.2 Results

First, as forNNSVD- LRC and as opposed to NNSVD and SVD-NMF, our proposedmethod,
accNNSVD-PRP, decreases the relative error as the rank increase; see Fig. 1 for an example
on the AT&TFaces and Reviews data sets.We report representative examples for both classes
of data sets studied: dense and sparse; moreover for the Reviews data set it can be noted that
the relative error still decreases for all the rank values tested (from k = 1, . . . , 20) that could
represent an over-estimation of the k = 5 topics in the data sets, as explained in Zhong and
Ghosh (2005).

We also observe on Fig. 1 that accNNSVD-PRP generates solutions with initial error
larger than that of NNSVD- LRC, but this is expected since accNNSVD-PRP only optimizes
the factor H in the second phase. Table 1 reports the relative errors after a few iterations
(namely, 5, 25, 125) of the HALS algorithm for NMF (Cichocki et al. 2007). We observe
that acc-NNSVDPRP provides similar relative error values compared to NNSVD-LRC, this
is even more evident especially after enough iterations of HALS. Compared to the other
initialization strategies, accNNSVD-PRP and NNSVD-LRC perform on average better, as
already reported in Atif et al. (2019).

However, although accNNSVD-PRP does not outperform NNSVD-LRC in terms of rela-
tive errors, it runs significantly faster since its second phase is much cheaper. Table 2 reports
the computational times of the tested NMF initialization for different over-estimated rank
values i.e., k = 15, 20, 25, 35, 50.

We observe that, except for random initializations which are very fast to generate,
accNNSVD-PRP runs among the fastest in all cases (always at least second best, and very
close to the fastest when not the best). In particular, accNNSVD-PRP runs significantly faster
than NNSVD-LRC: on average 4.5 times faster on dense data sets, and 1.7 times faster on
sparse data sets.
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5 Conclusion

In this paper, we have proposed a new SVD-based initialization for NMF, namely
accNNSVD-PRP. It is inspired byNNSVD-LRC, a state-of-the-art algorithm, but we adapted
the two steps of NNSVD-LRC, by reformulating the NNSVD to introduce a factor H that
takes into account some discarded terms that will be updated later with a low-rank correction.
This procedure allows the proposed algorithm to run significantly faster, while keeping its
nice properties, in particular that the approximation error decreases as the factorization rank
increases. As a remark we would like to note that this approach can be adapted to switch
between H and W factors and to include W in the LRC correction phase as well, to fur-
ther improve performance of accNNSVD-PRP and this is the object of our future works. To
conclude, we have shown over various sparse and dense datasets that accNNSVD-PRP runs
significantly faster than NNSVD-LRC while performing similarly as an NMF initialization
scheme in terms of relative errors. Moreover, it outperforms other state-of-the-art algorithms
such as NNSVD and SVD-NMF.
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